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Abstract: To speed up the visualization of remote sensing image and improve the fluency
of multi-level browsing in both Client/Server and Browser/Server, the application of pyramid
building method is an indispensable choice. Pyramid building algorithms are data and computation
intensive. With the development of modern remote sensing technology, the scale of remote
sensing data obtained is becoming larger and larger. The processing performance can be poor if
traditional sequential processing techniques are adopted to these large-scale image data. Based on
the advantage of high-performance parallel computing, this paper presents a MPI and OpenMP
based hybrid parallel computing paradigm, named “ParaOvr”, for pyramid building. To realize
fast data reading and writing without conflicts, this paper gives a solution by pre-planning the data
organization of an image pyramid. The proposed data organization scheme overcomes the limits
of pyramid file, which must be written by a fixed size for one time. Furthermore, the same level
of pyramid data is compact organized. In order to improve the efficiency of image processing,
this paper presents a data-partition method based on line division. In this method, the number of
data partitions is equal to the total number of processes during image processing. Each process
includes reading, writing and re-sampling parallel to its data. The experiments show that compared
to ArcGIS and GDAL, ParaOvr has a super linear acceleration in data processing. The advantages
become more obvious when the size of data is large.
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1. Introduction

Image pyramid is a multi-resolution raster data structure. In simple terms, the structure of an
image pyramid is a serie of different resolution raster images, established from the original raster
image, each image resolution corresponds to each pyramid level [1]. At the same time, pyramid is
also a raster image loss compression. When the user needs an operation such as “zoom in”, “zoom
out” or “pan” to obtain raster images with different resolutions, system can select a similar resolution
of data according to the user view for visualization. So the system only needs a few calculation and
query to obtain the results without any sequential sampling calculation. Therefore, image pyramid
can reduce the time of data display and improve the raster image visualization performance [2,3].

Since pyramid model is an effective method for fast image display and efficient processing
[4,5], pre-using pyramid model to generate multi-level resolution images has become a premise and
foundation for the release of remote sensing images on the Internet and many other fields such as
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pattern recognition, Graph Signals Transformation, and Image Change Detection. Ren proposes
three standard approaches to build irregular pyramid partitions for image retrieval the bag-of words
model [6]. Yan et al. propose a accurately in two steps method to extract lines based on a binary
image pyramid and Hough transforms [7]. Teng et al. propose an image enhancement method
based on Laplacian pyramid [8]. Zhao et al. propose a novel fast haze removal technique for single
image using Image Pyramid [9]. Li constructs the multi-resolution scheme using a Gaussian image
pyramid [10]. Belle presents a method using image pyramid to reduce the cost of images capturing
[11]. Momeni, uses image pyramids to build up a face recognition system [12]. Wei et al. propose
a fast view scheme for mass remote sensing images based on image pyramid [3]. Huang uses an
image pyramid for image segmentation [13]. Since image pyramid is widely used in various fields,
yet remote sensing images contain more and more large volumes of data and complex information
[14]. It is more difficult for traditional sequential processing algorithm and commercial software to
deal with such large-scale data efficiently. Therefore, image pyramid generation has become a key
problem for the high efficiency management and visualization of remote sensing image [15].

Currently, research on improving the efficiency of pyramid building is mainly focused on two
aspects, the first one is that improvement on existing pyramid model, another is parallelization of
pyramid [16]. Cheng et al. uses global subdivision grid to improve the traditional image pyramids
[17]. In order to ensure the generality of the pyramid file, modification of existing models is difficult
to significantly improve the efficiency of production in a pyramid. Personal computers can hardly
fast handle large-scale image processing task efficiently due to the limitation of hardware, with the
development of computer technology, computing resources become more and more. Therefore, using
the parallel processing mechanism of multiprocessing and multi-node to accelerate the processing
speed of geospatial data has become an inevitable trend [18–21]. Zheng et al. propose a distributed
method to accelerate the pyramid building speed [22], in the method he split the traditional task
into multiple grid cells according to the principle of equal tile, then let each grid cell as input data,
finally begin the parallel pyramid construction process, but this method is complex for multi node
task division and boundary grid. Kang et al. presents a method to parallelly build image pyramid
based on CUDA [16]. However, this system architecture has a high hardware cost, it needs to read
data constantly from the host memory into the GPU memory, and it cannot take the advantage of
clusters. Yi et al. proposes an opinion that uses MapReduce to build remote sensing image pyramid,
this method can use parallel disk system and cluster to handle large-scale remote sensing images
[23], but this method requires the data to be distributed storage and the results collection, and this
is usually time-consuming. He et al. use Message Passing Interface (MPI) to build pyramid of large
image datasets, and the result is good [24], but he did not make a further research on the structure
of pyramid. In order to get the strip-offset of each process, some data need to be written into each
strip in advance using IO function of GDAL library, this is a time cost procedure, furthermore the BIL
storage mode for improving the efficiency of parallel IO is also limited, and with the increases data
amount, the expenses of creating file view will becomes larger and larger.

In order to speed up the algorithm, this paper proposes an approach named “ParaOvr”. It uses
the shared-memory to build a pyramid in parallel. ParaOvr takes the hybrid parallel strategy of
multiprocessing and multithreading based on MPI and OpenMP (Open Multi-Processing). If multiple
processes cannot meet the application demands, the algorithm will be supplemented by multiple
threads, the results show that this method can greatly improve processing efficiency and stability.
Through study of the data structure of image pyramid, this paper proposes a highly efficient and
stable parallel access technology in pyramid file to pre-planning pyramid file data structure before
creating an empty pyramid file, so each process can be accurately read and written on the pyramid
files. Using ParaOvr, each process does not have to be under a fixed strip write tape size, it also solves
the common black edge and fragmented IO problem. A substantial increase in the parallel IO speed
and an improved pyramid construction efficiency have been achieved by ParaOvr.
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2. Background

Image pyramid is stored in a single file. There are two types of file formats respectively, overview
(“.ovr”) and the reduce resolution dataset (“.rrd ”). The rrd format is adopted by ArcGIS before the
version of 10.0, and is taken over by the format ovr after version 10.0. Ovr format is now the current
mainstream format to store the pyramid layer of raster dataset. Compared to the rrd format, ovr
allows data compression to control the quality of pyramid [25]. Based on the above characteristics,
this paper adopts the ovr format pyramid, ovr file uses the same data structure as the TIFF file,
and its file structure mainly contains the following three parts: Image File Header(IFH), Image File
Directory(IFD), Image Data(DATA) [26]. See Figure 1.

II/MM

42

IFH

Byte order

A Offset of first IFD

0~1

2~3

4~7

IFD

File certification

B

Byte offset:

A~A+1

A+2~A+13

Number of DE

DE 0

A+14~A+25 DE 1

A+26~A+37 DE 2

A+2+B×12

~A+6+B×12
Offset of next IFD

**
***

*

DE

Tag

Type

Count

Value or Offset

X~X+1

X+2~X+3

X+4~X+7

X+8~X+12

Figure 1. Structure of ovr format pyramids files

As shown in Table 1, IFH total size is 8-byte, recording the byte order of the file, the ovr(TIFF)
certification number, and the first IFD offset. Bytes 0-1: the byte order used within the file, in the “II”
format, byte order is always from the least significant byte to the most significant byte. In the “MM”
format, byte order is always from most significant to least significant. All for both 16-bit and 32-bit
integers. Bytes 2-3: an arbitrary chosen number 42 that further identifies the file as an ovr (TIFF) file.
Bytes 4-7: offset of the first IFD. Particularly, Image File Directory (IFD) may follow the image data it
describes [26].

Table 1. IFH data structure

Offset Description Value

Bytes 0-1 Byte order flag II or MM
Bytes 2-3 ovr(TIFF) file identification 42
Bytes 4-7 The offset (in bytes) of the first IFD Any location but must begin on a word boundary

IFD contains four parts: 2-byte for directory entry number of current pyramid level (DEC), a
sequence of 12-byte each directory entry, 4-byte offset of offset to next IFD, there must be at least 1
IFD in a TIFF file and each IFD must have at least one entry. See Table 2.
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Table 2. IFD data structure

Name Size in byte Description

DEC 2 The number of values
DE 112 The first IFD Entry (DE)
DE 212 The second IFD Entry (DE)
...... ...... ......
DE n12 The nth IFD Entry (DE)

NIFD 4 Next offset of IFD relative to pyramid file beginning

A TIFF field is a logical entity consisting of TIFF tag and its value. This logical concept is
implemented as an image file Directory Entry (DE), the number of directory entries can be different,
users can extend the type and number of DE according to their needs. Each DE describes a field
of current pyramid level. The DE consists of four parts: TIFF Tag, Field Type, Count and Value.
The TIFF Tag is an integer number to mark the name of the field. For example, Tag 262 represents
PhotometricInterpretation label. Tag 257 represents ImageLength and 256 represents ImageWidth.
All entries in an IFD must be sorted in ascending order of Tag. Type describes the size of the field,
such as BYTE, ASCII, SHORT and LONG. Count is the number of values not the total number of
bytes. To improve the computational and space efficiency, the value offset contains the value instead
of pointer of memory address only if the value is fitted into 4 bytes. If the value is shorter than 4
bytes, it is left-justified within the 4-byte value Offset. The Type and Count of the field determine
whether the Value can be represented within 4 bytes. Table 3 gives a short brief about basic image file
directory entries [26].

Table 3. Example of IFD Entry

Tag Decimal Type Value

ImageWidth 256 SHORT/LONG The number of rows in the image
ImageLength 257 SHORT/LONG The number of columns in the image

Compression 259 SHORT
1 = No compression
2 = Huffman encoding
32773 = PackBits compression

StripOffsets 273 SHORT/LONG The byte offset of each strip
RowsPerStrip 278 SHORT/LONG The number of rows in each strip
XResolution 282 RATIONAL The number of pixels per ResolutionUnit in the ImageWidth
YResolution 283 RATIONAL The number of pixels per ResolutionUnit in the ImageLength

ResolutionUnit 296 SHORT
1 = No absolute unit of measurement
2 = Inch
3 = Centimeter

The data in pyramid are organized by strips or tiles, position of each strip or tile is defined by
StripOffset field. Furthermore, StripOffset field is the only one-way to access to the data offset. So
based on StripOffset field, each data strip of tile in pyramid can be written into anywhere except
where IFH and IFD are located. Yet this raise a new problem that two logically adjacent blocks may
not be adjacent to physical storage. As Figure 2 shows, two logically adjacent strips of 3 bytes are
stored in the physical pyramid file.

3. Hybrid Parallel Paradign for Pyramid Building of Remote Sensing Data

3.1. Pyramid’s Image Data Organization of ParaOvr

Based on aforementioned reasons, it is necessary to pre-organize the storage location of the
pyramid before writing, so that the same level of pyramid data can be physically contiguous storaged,
and conflict with the location of IFH and IFD can be avoided.
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Figure 2. Pyramid data storage in physical

In order to let the pyramid’s image data stored contiguously, this paper uses the storage of
IFH-DATA-IFD. In Figure 3, take the first level of the pyramid for example, assuming the width
of current level of the pyramid is XSize, the height is YSize, the bands count is nBands, number of
directory entry is DEC. The calculation formula of the image data size of the current level is as follows:

imgSize = XSize×YSize× nBands (1)

DATA

IFH

IFD

Byte Offset：0～7

  Byte Offset:8～8+imgsize

Byte Offset:
8+imgsize～8+imgsize+(6+DEC×12)

Figure 3. Pyramid files structure

The strategy of writing resampling data into a pyramid file is as follows: first, write flag
information of IFH data at the 0∼3 byte offset of the beginning of the pyramid file (as described
in Table 1), then write the first IFD offset value at the offset 4∼7 byte, the value of the first IFD offset
can be calculated with the following formula Equation (2).

IFDo f f set = 8 + imgSize (2)

The image data byte offset range is 8∼IFDoffset. Finally, when the image data writing process is
over, we begin to write the IFD. IFD size can be described by Equation (3).

IFDsize = 2 + DEC× 12 + 4 (3)

Meanwhile, the value of StripOffset field of strip m is given in Equation (4). The StripSize is
calculated as the size of each strip in byte.

StripO f f set = 8 + m× StripSize (4)
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The data structure of other level of the pyramid is similar to the first level, assuming that the
total level of the pyramid is n. The initial data offset of level lev can be calculated as Equation (5).

DataO f f (lev) =

{
8 lev = 0
DataO f f (lev− 1) + ImgIFD lev > 0

(5)

ImgIFD = Imgsize + IFDsize (6)

Assuming that StripOffset is the offset of strip m in level lev, then StripOffset can be calculated as
Equation (7).

StripO f f set(lev, m) = DataO f f (lev) + m× StripSize (7)

3.2. Data Partitioning Strategy of ParaOvr

Data partitioning for each process is an important step during parallel image pyramid building.
The performance of the final algorithm is directly determined by the task assignment. Because
line division has the highest efficiency on allocation and execution [27,28], ParaOvr adopts the
line division method to perform data partitioning. The detailed description is shown in Figure 4,
assuming the original image width is imgXsize, the height is imgYsize, the total number of process
involved in the operation is n, each process is described as Ranki (i=0, . . . , n-1). So every band is
divided into n strips, each Ranki map to one Stripi (i=0, . . . , n-1) respectively. Assuming that the size
of each process Ranki is srcBuffsize, we can get the srcBuffsize by Equation (8):

srcBu f f size = srcBu f f Xsize× srcBu f f Ysize

srcBu f f Xsize = imgXsize (8)

srcBu f f Ysize =

{
imgYsize/n i < n− 1
ImgYsize− [(n− 1)× imgYsize

n ] i = n− 1

The reading start offset of current band of process Ranki can be got by Equation (9):

o f f set(i) = i× (imgYsize/n) (9)

Each process for reading image data to memory parallelly from the original image is related to
offset(i), then each process resamples its data according to pyramid level, finally, the resampling data
is written to the corresponding location of pyramid file.

Rank 0
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Rank n-2

Rank n-1

…
…

imgYsize

imgYsize/n

imgYsize/n

imgYsize/n

imgYsize/n

imgYsize/n

…
…

imgXsize

 
n

1nimgYsize
imgYsize




Figure 4. Image data partitioning in each process

It may have a slight problem using the above task partitioning method. If the image size is too
large and the number of processes is not enough, then the data size assigned to each process maybe
too large, and if the data size is larger than the upper bound of integer, the function RasterIO of GDAL
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is not able to handle such a big data, may cause type overflow. We propose a solution combined with
multithreading and multiprocessing in this paper to address the issues discussed above. As shown in
Figure 5, when the data size of a process reaches an integer upper bound, the Open Multi-Processing
(OpenMP) is used to multithread this process, then the multiple threads are used to segment the data
of the process Ranki again.

Rank(i)

thread1

thread2

.
.
.

thread(k)

Figure 5. Using multithreading to divide data of process

Assuming that the data size of current process Ranki is rankSize, the upper limit of integer is
INT_MAX, the number of threads used in process Ranki is k (k is an integer), then we can get k by
Equation (10):

rankSize
2k 6 INT_MAX 6

rankSize
2k−1 (10)

The detail procedure of multithreading division method is described as the pseudo codes in
Table 4, the effect of function GDALRasterIO is to read the image data from a source remote sensing
image. Each thread according to the logical offset of their parent process and the relative offset to
their parent, then we can calculate the logical offset position from the source raster image of each
thread. Because all the threads are sharing their common parent process memory address space,
each thread can use the GDALRasterIO function of GDAL library to read image data in parallel and
independently from the memory space of their parent process, according to the logical offset position
from the source raster image we have calculated.

Table 4. Pseudo-codes of data partition based on multiprocessing and multithreading

1 i f ( rankSize > INT_MAX) {
2 i n t k = 1 ;
3 while ( rankSize > INT_MAX) { / / k p r e s e n t s a s t h e t o t a l number o f t h r e a d s
4 k = k ∗2 ;
5 rankSize = rankSize /2;
6 }
7 long nSubYsize = s r c B u f f s i z e /k ;
8 #pragma omp p a r a l l e l for p r i v a t e ( j ) / / b e g i n mult i−t h r e a d p r o c e s s i n g .
9 for ( i n t j =0 ; j <k ; j ++) { / / e a c h t h r e a d r e a d d a t a t o t h e i r p a r e n t p r o c e s s

10 GDALRasterIO ( GF_Read , 0 , o f f s e t ( i ) + j ∗nSubYsize , imgXsize , . . . ) ;
11 }
12 }

3.3. Data Parallel Resampling

In this paper, we use the nearest neighbor resampling method for each process or thread to
resample its reading data [29,30]. In simple terms, the length and width takes a pixel for each 2lev
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pixel, lev is presented as current level of pyramid. Because of the boundary problem, the adjacent
process which has the same amount of reading data may not always have the same final resampling
result. Figure 6 shows the schematic diagram of parallel resampling of each process in this paper, in
this figure we use a 7× 11 image data for example to perform the sampling operation of first pyramid
layer by process number n=3, the black block is the sampling results. From Figure 6, we can see that
the resampling sized of Rank0, Rank1, and Rank2 is 2, 1, 3, respectively. RowOffset for the starting
offset of black block within each process, meet Rank0 is 0, Rank1 is 1, Rank2 is 0, therefore, the data
resampling of each process should from the line offset RowOffset not just simply operate from the data
start position.

Resample

Rank1

Rank0

Rank2

RowOffset=0

Rank0

Rank1

Rank2

RowOffset=1

RowOffset=0

Figure 6. Data parallel resampling process

The size of the resampling data is not always all the same because of the inconsistency of
RowOffset, RowOffset is the sampling starting position of each process. RowOffset(i,m) is the RowOffset
of each process in Ranki and level of lev, and can be calculated by Equation (11):

RowO f f set(i, lev) =

{
0 o f f set(i)%2lev = 0
2lev − o f f set(i)%2lev o f f set(i)%2lev 6= 0

(11)

The offset(i) is the reading start offset of the current band of process Ranki defined by Equation (9).
The size of resampling data of each process Ranki in level of lev can be calculated using Equation (12):

resBu f f size(i, lev) = resBu f f X(i, lev)× resBu f f Y(i, lev)

resBu f f X(i, lev) =
imgXsize

2lev (12)

resBu f f Y(i, lev) =
imgYsize− RowO f f set(i, lev)

2lev

Based on the parallel resampling method above. Each process only needs to read the raw data
from a hard drive to memory once. When performing resampling process, we need to set different
sampling intervals and then reduce resampling from the original data.

3.4. Data Parallel Writing Method

As shown in Figure 7, pyramid data writing is divided into two parts: sequential and parallel.
For sequential process, Rank0 creates an empty pyramid file using the proposed IFH-DATA-IFH
structure, set aside the DATA space, and writing IFH and IFD into the appropriate location of the
empty pyramid using Libtiff library.
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Figure 7. Resampling data of pyramid writing method

Once IFH and IFD have been written into the empty pyramid file, then the parallel process
begins. We adopt the MPI parallel IO interface to write the resampling data of each process into the
DATA region in parallel. He et al. propose a MPI parallel writing method based on the File View and
Band Interleaved by Pixel Format (BIP) storage strategy [24]. In Figure 8, we take an image with 3
bands for example, to have a brief explanation to BIP data organization, as the figure shows, images
are stored sequentially in the order of all bands of the first image pixel, then storing all bands of the
second image pixel, cross storage and so on until all pixels are done [25]. Because all the data between
the same band are not contiguous, single-band and multi-band should to be considered separately. In
particular, you need to create a file view to deal with multi-band image which is a very complex task.

B
a
n
d
1

B
a
n
d
2

B
a
n
d
3

B
a
n
d
1

B
a
n
d
2

B
a
n
d
3

B
a
n
d
1

B
a
n
d
2

B
a
n
d
3

B
a
n
d
1

B
a
n
d
2

B
a
n
d
3

B
a
n
d
1

B
a
n
d
2

B
a
n
d
3

B
a
n
d
1

B
a
n
d
2

B
a
n
d
3

Pixel(0,0) Pixel(0,1) Pixel(0,n)

1 row

n row

…
…

1 to n column

Figure 8. BIP data organization

For the lack of BIP data organization in parallel IO, this paper proposes a new parallel data
storage structure using Band Sequential Format (BSQ) [25] which overcomes the shortcomings of
the BIP method of IO discontiguous and the complexity of file view creating. The main idea of the
algorithm is that each row of data are stored closely followed by the next row data of the same band,
after one band is done then save the closely followed next band (Figure 9). Since all the data in the
same band are stored contiguously, we do not need to create File View nor process single-band and
multi-band separately, we just need to calculate the absolute offset in the pyramid of each process
before writing.

With the band division method, we can get the absolute offset AbsOff of pyramid in level lev in
band q in Ranki using Equation (13):

AbsO f f (lev, k, i) = DataO f f (lev) + OvrSize(lev, k, i) (13)

OvrSize(lev, k, i) = k× XSize×YSize +
i−1

∑
j=0

resBu f f size(j, lev)
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Figure 9. BSQ data organization

So we only need to put the absolute offset position AbsOff, and the size of resampling data buffers
resBuffsize as arguments to the MPI_File_write_at() function to write the resampling data into pyramid
files.

3.5. Algorithm execution process of ParaOvr

The flow chart of ParaOvr is shown in Figure 10, the detailed description is as follows:
1. Initialize pyramid level, total process number, and lev—the initial iterator of pyramid level is

set to be zero. A number is assigned to each process, then, we can describe the subsequent
operation of the process using the process number.

2. Each process reads the metadata information of the original image, such as width, height, bands
count, and data type. Then, we define Rank0 as the master process, next step Rank0 create
the empty pyramid file according to the above metadata and the IFH-DATA-IFD rule we have
written above.

3. Dividing source image data averagely to each process by the line method, then for each process
the logical offset position of their allocated data block is calculated according to the process rank
number.

4. For each process, the data are read from the corresponding region of the original image to
the memory according to the data partition rule. If the data size of each process is large than
INT_MAX, then multiple threads are used to do a further division.

5. For each process, a 2lev granularity nearest neighbor interpolation algorithm is used to resample
the data read from step 5. lev is the current pyramid level.

6. Each process calculates the absolute write offset position in empty pyramid file according to
process-number and band-number, then MPI_File_write_at() function is used to parallelly write
the resampling data from memory into the empty pyramid file based on the obtained offset
position.

7. Add the current Pyramid level to 1, if the pyramid level is fewer than or equal to the pyramid
level we have set, then it to step 5. if the pyramid level is larger than the pyramid level we have
set, the pyramid construction is completed.
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Figure 10. A flow chart of ParaOvr algorithm

4. Experimental Results and Analysis

Two Supermicro high performance computers are used in the experiments. One is with Linux
CentOS6.3.X86_64 operation system (OS), another is with Windows 7 OS, and configurations of the
computer are given in Table 5. The GCC 4.4.6 and MPICH 3.0.4 are used as the compiler and MPI,
respectively.

Table 5. Configurations of the Supermicro computer

Type Description

CPU Four Inter(R) Xeon CPU E5-4620, 2.60GHz, 8 cores per CPU,
Totally 64 virtual CPU cores

RAM Totally 768GB, Samsung 32GB per each

File system A disk array with 48TB

OS Windows 7 Professional, 64-bit / Linux CentOS6.3.X86_64

Experimental test data with different size and band count are used in ParaOvr to build a 9-level
pyramid, information on the images is given in Table 6.

Table 6. Configurations of the Supermicro computer

Name Sizea Image Sizeb Type Bands

0.TIF 12.9 72, 001× 48, 001 Pan 1
1.TIF 14.2 87, 040× 58, 368 Multi 3
2.TIF 53.2 220, 672× 86, 272 Multi 3
3.TIF 115.9 432, 001× 144, 001 Pan 1
4.TIF 137.81 136, 448× 90, 368 Multi 3
5.TIF 278.2 428142× 232572 Multi 3

a. The unit is "GByte" b. The unit is "Pixel"
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4.1. Time consuming with respect to the number of processes

Six images shown in Table 6 are used in this experiment, and total time cost of the algorithm for
each image is recorded. We uses the average value of ten experiments by removing the maximum
and minimum values.

From Figure 11 we can see that the change of computational time of the algorithm varies with
the number of processes, we can see from Figure 11 that: (1) In a certain range, the efficiency of the
algorithm increases with the number of processes obviously, but if the number of processes increases
further, the efficiency of algorithm gradually tends to be gentle, however if number of process is
further increased, the efficiency of algorithm may be declined by a certain degree. (2) More data can
produce the better efficiency performance. (3) For multi-band images, ParaOvr has the same high
efficiency as a single-band image. The main reasons are that with the increase number of processes,
task will be divided into more processes, the scale of the task for each process will be smaller, so the
overall performance of the algorithm is improved. But when the number is increased to a certain
degree, performance tend to be stable because of the limit of IO maximum speed of a hard disk. But
the number of processes is further increased, IO competing may occur between each process, leading
to a decline in performance. So a proper number of processes to different size of image are a better
way to access the best performance.
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Figure 11. The parallel depth with different image size

There is a special phenomenon in Figure 11, in test data 3.tif and 4.tif we can see when the
process is 1, the time cost 3.tif is larger than 4.tif though the file size of 4.tif larger than 3.tif. It is
mainly because 3.tif is a single-image with image size of 432, 001× 144, 001 which is far larger than
136, 448× 90, 368 of 4.tif though the file size is not larger than 4.tif. When only one process is used in
ParaOvr, in order to avoid type overflow, we need to read data from multitimes. This means more
IO operation to a larger image size, so the time cost of 3.tif is larger than 4.tif. But this problem will
gradually decrease with the number of process.

Another interesting observation is that, by comparing process 1 and process 2 in image 3.tif or
image 5.tif, we can see that process 2 has a super linear acceleration as compared to process 1, this
maybe because ParaOvr uses the line-partition method, 3.tif and 4.tif have one thing in common that
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their data size of each line is very large, when using only one process, we have to read less lines
for each time in order to avoid type overflow, so it has a great pressure in IO to finish such a large
data. But when we use two processes, each process can also be divided into multiple threads, so each
process can better elaborate the performance of parallel IO.

4.2. Comparasion with Open-Source GDAL Pyramid Algorithm

The GDAL (Geospatial Data Abstraction Library) is a powerful geography data conversion
library, there is a pyramid building tool named “gdaladdo”, we manually separate the six images
above into two groups, the performance is tested in single-band and multi-band images between
GDAL and ParaOvr. The average of ten experimental results is obtained by removing the maximum
and minimum values. The details are shown in Figure 12.
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Figure 12. Performance between ParaOvr and gdaladdo

We can find from Figure 12 that a large size of test data produces poor performance. When
the scale of dataset reaches 100GB, the efficiency of gdaladdo is unacceptable, and if the scale up to
image 5.tif, the gdaladdo can no longer work after running 135 hours. You can see a huge performance
boost from ParaOvr as compared to gdaladdo. The gdaladdo is a sequential algorithm, it cannot cross
node nor using multi-core computing resources, and the writing method of fixed tile size mode will
increase the IO times to some extent. Yet ParaOvr adopts the line mode writing method. Line mode
can make better use of the computer’s memory resources and reduce the IO times comparing with
the fixed tile size mode. Each process is processing its corresponding data, which realizes the double
parallel of the resampling and IO, so the promotion of performance of the ParaOvr is very obvious.

4.3. Comparasion with Commercial Software ArcGIS

Because ParaOvr running in the Linux environment and ArcGIS can only be installed in
Windows operation system, we choose two Supermicro computers which have the same hardware
environment, the version of ArcGIS is 10.2, and there is a pyramid building tool in its ArcToolbox
module, it allows to set a parallel parameter factor to achieve multithreading processing. So we test
the ParaOvr and ArcGIS in the same parallel factor 16, the only difference is that ParaOvr using 16
processes to parallel process yet ArcGIS using 16 threads. The result value is adopted by the average
of ten times testing value which the maximum and minimum values are removed. The details are
shown in Figure 13.

From the experimental results, we can see that the parallel effect is not obvious though the
parallel parameter is set. Compared to GDAL, ArcGIS performs better than GDAL in single-band
image, but it is also short of efficiency when dealing with larger-scale image. When the test case
reaches in 6.TIF, ArcGIS crashes after running 75h, so the ArcGIS cannot handle the pyramid building
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Figure 13. Performance between ParaOvr and ArcGIS

task of larger than 200GB, and ParaOvr has a better performance no matter in efficiency or stability
with the increasing data size.

4.4. Comparasion with MPI based Pyramid Building Algorithm

He et al. proposed a pyramid parallel building algorithm using MPI[24], comparing with
ParaOvr in process number 16, the experimental result is shown in Figure 14.
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Figure 14. Performance between ParaOvr and MPI based algorithm

From Figure 14, we can see that the MPI based method can keep a high performance in
processing single-band images, however, when facing multi-band images the performance will be
sharply declined, this is more serious when the number of bands is increased. The main reason is that
the MPI based method using file view writing based on BIL structure. The efficiency of this writing
method is very low when dealing with multi-band images, from images 5.TIF and 6.TIF we can see
that the MPI based method appears abnormal and we cannot get the experimental result. We can
see that the efficiency of ParaOvr is roughly proportional to the MPI based method with the bands
of image. ParaOvr can have the same performance as single-band when dealing with multi-band
images. Furthermore, ParaOvr has a better performance when facing big data size.

5. Conclusions and Future Work

To address the problems and drawbacks of the current image pyramid building algorithms,
this paper proposes a new parallel pyramid building method named “ParaOvr” based on MPI and
OpenMP. ParaOvr improves the efficiency of parallel pyramid building process by pre-planning the
data organization mode of image pyramid file and two level parallelism of resampling and IO.
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During the parallel computing, the line data partitioning method is studied and a new parallel
data reading method is proposed based on multiprocessing and multithreading to solve the type
overflow problem, then we give the implementation method of parallel resampling and its calculation
example. Finally, we propose a parallel writing method based on BSQ data storage model to solve the
problem of low efficiency of multi-band images and the phenomena of data loss. The experimental
result shows that the performance of ParaOvr has a great improvement compared to current methods
and tools, especially the advantage is more obvious with the increase of the data size and the
number of bands. Furthermore, the performance of ParaOvr can have a further boost through the
improvement of the extension of file system bandwidth.

This work suggests several areas for future research: One interesting issue for future work is
using distributed parallel computing platform like Spark to implement the algorithm. In this paper,
we use the centralized storage system, which has a limited scalability. Using distributed system
may improve the IO performance greatly. Another interesting issue for future work is to estimate
the number of processes automatically according to the size of image, since the number of processes
determines the size of data partition and the parallel granularity, how to estimate the number of
process by the program automatically is also our next work.
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